TIDA-00069: This reference design and the associated example Verilog code can be used as a starting point for interfacing Altera FPGAs to Texas Instruments' high-speed LVDS-interface analog-to-digital converters (ADC) and digital-to-analog converters (DAC). The firmware implementation is explained and the required timing constraints are discussed.
TIDA-00684: In TIDA-00684 reference design a quad-channel TSW3080 evaluation module (EVM) is developed to shows how to use an active amplifier interface with the DAC38J84 to demonstrate an arbitrary-waveform-generator frontend. The DAC38J84 provides four DAC channels with 16 bits of resolution with a maximum update rate of 2.5 GSPS. The THS3217 provides a wideband differential-to-single-ended output. The THS3095 provides a high dynamic range output of up to 26 VP-P. The LMH5401 provides a very wideband differential output. All of these paths provide a DC-coupled interface with the ability to drive 50 Ω at a high-performance level. The design also includes a reference transformer path for comparison purposes.
TIDA-01161: The RF sampling architecture offers an alternative to the traditional super-heterodyne architecture. An RF sampling analog-to-digital converter (ADC) operates at a high sampling rate and converts signals directly from radio frequencies (RF) to digital. Because of the high sampling rate, the RF sampling architecture supports very wide signal bandwidths. Higher signal bandwidths increase the capacity of the system allowing for faster data transmission or greater user access. The reference design features the ADC32RF45 which is a dual channel,14-bit resolution ADC sampling up to 3-GSPS. The maximum signal bandwidth is set by the ADC sampling rate divided by two. With this reference design the signal bandwidth capability exceeds 1-GHz. The maximum input frequency is set by the input bandwidth of the input buffers of the ADC and the input transformers. This reference design allows direct capture of RF signals up to 4-GHz which is suitable for all of the key telecommunication bands and S-band RADAR applications. The design includes an optimized clocking solution for maintaining the JESD204B serialized data interface and achieving the highest signal-to-noise ratio (SNR) performance.
TIDA-01163: The RF sampling receiver captures signals directly in the radio frequency (RF) band. In a multi-band application the desired signals are not very wide band but they are spaced far apart within the spectrum. The reference design captures signals in different RF bands and digitally down-converts them to baseband. The reference design showcases the ADC32RF80 dual channel, 14-bit, 3-GSPS RF sampling telecom receiver. The device includes two digital down converters (DDC) per channel. The DDC offers decimation values from 8 to 32 and includes a 16-bit numerically controlled. With the high sampling rate of the ADC32RF80 the reference design captures a large swatch of RF spectrum which contains signals in multiple bands and potentially undesired interferers. The DDC independently mixes the desired bands to digital baseband. Decimation reduces the output data rate to a lower level and provides digital filtering around the desired band to eliminate interference and to improve signal-to-noise ratio performance. This feature is critical for high end telecommunication receivers that require high dynamic range.
TIDA-00814: A direct RF sampling receiver approach to a radar system operating in S-band is demonstrated using the ADC32RF45, 3-Gsps, 14-bit analog to digital converter (ADC). RF sampling reduces the complexity of a system by removing down conversion and using a high sampling rate enables wider signal bandwidths. The approach is demonstrated by building a receiver based on the ASR-11 air traffic control radar specifications.
TIDA-01016: TIDA-01016 is a clocking solution for high dynamic range high speed ADC. RF input signals are directly captured using the RF sampling approach by high speed ADC. The ADC32RF45 is a dual- channel, 14-bit, 3-GSPS RF sampling ADC. The 3-dB input bandwidth is 3.2 GHz, and it captures signals up to 4 GHz. This design showcases the clocking solution using the LMX2582, to achieve the best SNR performance of ADC32RF45 at higher input frequencies used in microwave backhaul applications.
TIDA-00069: This reference design and the associated example Verilog code can be used as a starting point for interfacing Altera FPGAs to Texas Instruments' high-speed LVDS-interface analog-to-digital converters (ADC) and digital-to-analog converters (DAC). The firmware implementation is explained and the required timing constraints are discussed.